Journal of Oral Implantology Microthreaded Implants and Crestal Bone Loss: A Systematic Review --Manuscript Draft--

Manuscript Number:	aaid-joi-D-16-00170					
Full Title:	Microthreaded Implants and Crestal Bone Loss: A Systematic Review					
Short Title:	Microthreaded Implants and Crestal Bone Loss					
Article Type:	Review Paper					
Keywords:	Microthreaded implants, marginal bone, crestal bone loss, crestal bone level, dental implant design					
Corresponding Author:	Ahmad Kutkut, D.D.S., MS. University of Kentucky College of Dentistry Lexington, KY UNITED STATES					
Corresponding Author Secondary Information:						
Corresponding Author's Institution:	University of Kentucky College of Dentistry					
Corresponding Author's Secondary Institution:						
First Author:	Ahmad Al-Thobity, BDS, MDS, FRCDC					
First Author Secondary Information:						
Order of Authors:	Ahmad Al-Thobity, BDS, MDS, FRCDC					
	Ahmad Kutkut, DDS, MS, FICOI					
	Khalid Almas, BDS, MSc, FRACDS, FDSRCS, FICD					
Order of Authors Secondary Information:						
Abstract:	This systematic literature review investigated the effect of microthreaded-neck dental implants on crestal bone loss. Using the participants, interventions, comparison groups, outcomes, and study design (PICOS) system, we addressed the following focused question: Do microthreaded-neck dental implants positively affect the crestal bone level around dental implants? We searched 3 electronic databases to find articles published between January 1995 and June 2016 that contained any combination of the following keywords: dental implant, microthread, microthreaded, crestal bone level, crestal bone loss, and alveolar bone level. We excluded case reports, review articles, letters to the editor, commentaries, and articles published in a language other than English. We found a total of 70 articles. After eliminating duplicates and applying PICOS eligibility criteria, we selected only articles that reported the results of randomized controlled trials, prospective or retrospective cohort studies, case-control studies, cross-sectional studies, or other types of clinical trials that compared the microthreaded implant design to other implant designs. We were left with 23 articles for review. The 23 articles reported crestal bone loss ranging from 0.05 mm to 0.9 mm, with a range of 12 to 96 months of follow-up. Less crestal bone was lost with dental implants that had a microthreaded neck design than with machined-surface or conventional rough-surface dental implants. Thus, microthreaded dental implants are a better choice than are implants with other designs. Future studies should use standardized imaging techniques to to evaluate the placement of these implants in bone-augmented sites.					

Microthreaded Implants and Crestal Bone Loss: A Systematic Review

Ahmad Al-Thobity, BDS, MDS, FRCDC*; Ahmad Kutkut, DDS, MS, FICOI**; Khalid Almas BDS, MSc, FRACDS, FDSRCS, FICD***

Effort was equally distributed between the first two authors.

*Assistant Professor, Department of Substitutive Dental Sciences, College of Dentistry, University of Dammam, Dammam, Saudi Arabia Email: <u>aalthobity@uod.edu.sa</u>

**Assistant Professor, Division of Prosthodontics, College of Dentistry, University of Kentucky, Lexington, KY, USA.

Email: <u>ahmad.kutkut@uky.edu</u>

***Professor, Division of Periodontology, College of Dentistry, University of Dammam, Dammam, Saudi Arabia.

Email: Kalmas@uod.edu.sa

Corresponding Author:

Ahmad Kutkut, DDS, MS, University of Kentucky College of Dentistry, Division of Prosthodontics, 800 Rose Street, D646, Lexington, KY 40536 Tel: +18593234104 Fax: +18592571847 ahmad.kutkut@uky.edu Word count: 4705 No. of figures: 3

No. of table: 1

Running Title: Microthreaded implants and crestal bone loss

Abstract

This systematic literature review investigated the effect of microthreaded-neck dental implants on crestal bone loss. Using the participants, interventions, comparison groups, outcomes, and study design (PICOS) system, we addressed the following focused question: Do microthreaded-neck dental implants positively affect the crestal bone level around dental implants? We searched 3 electronic databases to find articles published between January 1995 and June 2016 that contained any combination of the following keywords: dental implant, microthread, microthreaded, crestal bone level, crestal bone loss, and alveolar bone level. We excluded case reports, review articles, letters to the editor, commentaries, and articles published in a language other than English. We found a total of 70 articles. After eliminating duplicates and applying PICOS eligibility criteria, we selected only articles that reported the results of randomized controlled trials, prospective or retrospective cohort studies, case-control studies, cross-sectional studies, or other types of clinical trials that compared the microthreaded implant design to other implant designs. We were left with 23 articles for review. The 23 articles reported crestal bone loss ranging from 0.05 mm to 0.9 mm, with a range of 12 to 96 months of followup. Less crestal bone was lost with dental implants that had a microthreaded neck design than with machined-surface or conventional rough-surface dental implants. Thus, microthreaded dental implants are a better choice than are implants with other designs. Future studies should use standardized imaging techniques to to evaluate the placement of these implants in bone-augmented sites.

Key words: Microthreaded implants, marginal bone, crestal bone loss, crestal bone

level, dental implant design

Introduction

Tooth loss can be caused by periodontal disease, abscess formation, trauma, or vertical tooth fracture. Common consequences of tooth loss include progressive alveolar bone resorption and decreased masticatory performance.¹ Edentulism causes two serious problems: disability, because it limits a patient's ability to speak and eat, two essential tasks in life; and handicap, because important changes are necessary to compensate for the deficiencies.¹ Both problems have been associated with a negative impact on psychosocial well-being, especially among elderly patients.^{1,2} Douglass et al² estimated that, in the United States, nearly 38 million adults are in need of 1 or 2 complete dentures.

Tooth replacement with dental implants has led to an important revolution in modern clinical dentistry. Brånemark first introduced osseointegrated dental implants to allow firm anchorage of titanium implant screws into living bone, a process referred to as osseointegration.³ The long-term clinical success of dental implants depends mainly on the preservation of the bony support around the implant, which is usually evaluated with radiographic images.⁴

Albrektsson et al⁵ proposed criteria for assessing and evaluating the success of implant survival; these criteria included marginal bone remodeling of less than 2.0 mm in the first year after implant placement and less than 0.2 mm each year thereafter. These changes are usually related to the use of implants with a conventional machined surface and a conventional neck design.⁵

Recently, several studies have shown that implants with a rough surface and a microthreaded-neck design may improve the preservation and stabilization of crestal bone.^{6,7} Friberg and Jemt⁷ reported that TiUnite implants with a rough surface exhibit a

higher success rate than that associated with turned Brånemark implants that have a machined surface. Abuhussain et al⁸ reported that the presence of microthreads up to the neck of the implant positively affects the retention of crestal bone. Moreover, microthreads around the implant neck may enhance initial implant stability in the presence of an underprepared osteotomy (i.e., implant bed preparation), thereby contributing to the achievement of better primary stability, which in turn may help reduce the length of time required for the healing phase.⁶⁻⁸

However, this positive effect of the microthreaded design on the level of crestal bone is subject to several factors that may change the biological behavior of bone. These factors, which affect optimal long-term treatment outcomes of implant therapy, especially in the esthetically sensitive anterior region, include the following: bone quality and quantity, soft-tissue biotype,⁹ condition of the adjacent teeth,¹⁰ distances to the adjacent teeth,¹¹⁻¹³ biologic width and the platform-switching (PS) concept,¹⁴⁻¹⁶ implant design at the macro, micro, and nano levels, as well as implant dimensions,^{6-8,17} abutment design at the macro, micro, and nano levels,¹⁸ augmentation procedures, including type of procedures and materials and membranes used,¹⁹ surgical procedures, including soft-tissue management and time point of insertion,²⁰⁻²² depth of implant insertion,²³ times of loading and restoration, prosthetic procedures used and frequency of secondary-component replacement,^{24,25} provisional and definitive restorations, patient compliance, oral hygiene, smoking, nutrition, and intervals between dental visits.¹⁸

The biologic width around the tooth or implant involves the dimensions of periodontal and peri-implant soft-tissue structures, such as the gingival sulcus, the junctional epithelium, and the supracrestal connective tissues. According to Tarnow et

al,¹¹ the bone facing the oral cavity is invariably covered by periosteal tissue, connective tissue, and epithelial tissue, all of which may vary in thickness. Cohen²⁶ defined the clinical concept of biologic width to include the dimensions of the epithelial and connective tissue attachments. The dentogingival complex additionally includes the vertical dimension of the gingival sulcus. According to measurements conducted by Gargiulo et al,²⁷ the average biologic width (from the base of the sulcus to the alveolar bone margin) is 2.04 mm, of which 0.97 mm is the epithelial attachment and 1.07 mm is the connective tissue attachment. These dimensions, however, are in no way static but are subject to interindividual variation (from tooth to tooth and from patient to patient) and also to variation according to gingival types and implant concepts.^{11,26,27}

Published reports have shown that the resorption of crestal bone around the implant platform does not begin until the implant is uncovered and exposed to the oral cavity.^{11,28-31} This exposure will lead to bacterial contamination of the gap between the implant and the superstructure.^{11,28-31} Bone remodeling will continue until the vertical and horizontal biologic width has been created and stabilized, with an average bone loss of 1 to 2 mm circumferentially during the first year of restoration.¹¹ For this reason, a minimal distance of 3 to 4 mm should be maintained between 2 adjacent implants, and PS should be used, especially in the esthetic reconstruction zone, so that intact papillae and stable inter-implant bone can be obtained. As first defined by Tarnow et al in 1992¹² and modified in 2003,¹³ the distance between the bony base of the papilla and the contact point of the superstructure should be less than 5 mm in expectation of complete filling of the interdental space with gingival tissue to form normal papillae, thus leading to an optimal esthetic outcome.

The PS effect was first observed in the mid-1980s. The implant abutment connection design meant that larger-diameter implants were often restored with narrower abutments (Ankylos or Friadent implants; Dentsply, York, PA, USA; Bicon, Jamaica Plain, MA) because congruent abutments were often still unavailable. As it later turned out, this was a remarkable coincidence. The abutments used with conventional implant types are generally flush with the implant shoulder in the contact zone. With many implant systems, this positioning results in the formation of a microgap between the implant and the abutment. Published studies have shown that bacterial contamination of the gap between the implant and the abutment adversely affects the stability of the periimplant tissue.³²⁻³⁴

Depending on the positive fit of internal or external connections at the implant abutment interface, contamination of the microgap results in a flow of bacteria and initiates the formation of inflammatory connective tissue in the region of the implant neck, depending on the insertion depth of the implant.³² This phenomenon, described by Ericsson et al³⁰ as abutment inflammatory cell infiltrate, was considered to be a biological protective mechanism against the bacteria residing in the microgaps, explaining the plaque-independent vertical and horizontal crestal bone loss (CBL) of approximately 1 to 2 mm that occurs during the first year after implant placement. The PS concept requires that this microgap be placed away from the implant shoulder and closer to the axis so that the distance of this microgap from the bone is increased.³⁵⁻³⁷ This method generally implies the use of a reduced-diameter abutment, according to the microbiological considerations outlined above, and delivers a measure of protection for the marginal bone. The preservation of periimplant bone is particularly important in the esthetic zone.

The design of the most current generation of implants includes a continuous micro-rough or nano-rough surface extending to the implant neck, along with microthreads in the cervical region. Integrating the PS concept in the presence of a completely rough implant surface plays a central role in moving the microgap on the implant platform closer to the implant axis, thereby counteracting bone resorption tendencies. Implants with a continuous micro-rough and nano-rough titanium surface extending to the implant neck facilitate osseointegration along the entire length of the implant, involving the entire implant surface. The microthreads in the cervical region result in the transmission of functional loads to the adjacent bony structures, supporting the formation of trabecular bony structures and stabilizing the region in question.

The aim of this systematic review was to evaluate and analyze the effect of a microthreaded-neck implant on CBL, as determined by various clinical trials.

Materials and Methods

Addressed Question and Eligibility Criteria

The following focused question was addressed: Do microthreaded-neck dental implants positively affect the crestal bone level around dental implants? Publications to be included in this review reported the results of original clinical studies that measured CBL during a reported follow-up period.

Search Strategy

We extensively searched 3 electronic scientific databases: PubMed/MEDLINE (National Center for Biotechnology Information); Dentistry and Oral Science Source

(DOSS; searched through EBSCO); and the Cochrane Register of Controlled Trials (searched through EBSCO) to find articles published between January 1995 and June 2016. To be considered for inclusion in this review, published articles were required to contain some combination of the following keywords: microthread, microthreaded, dental implant, crestal bone level, CBL, and alveolar bone level. No limits were applied to the initial search. This electronic search was followed by hand-searching (checking the reference lists of the relevant review articles and eligible studies for additional publications).

This systematic review was conducted according to the Preferred Reporting Items for Systematic Review and Meta-analysis Protocols (PRISMA-P) guidelines.³⁸ Ultimately, the search was limited to published peer-reviewed articles. Titles of articles were thoroughly scrutinized to exclude publications that did not clearly compare microthreaded implants to other types of implants. Whenever the titles of the articles were not sufficiently informative to allow us to judge their relevance, we also scrutinized the abstracts to determine whether the articles qualified for the study.

We used the criteria developed by Dixon-Woods et al^{39,40} to assess the quality of the studies included in this review. To be considered of high quality, studies had to meet the following criteria: clarity of the research questions to be addressed; suitability of quantitative methods in relationship to aims and objectives; and appropriate sampling technique with regard to the research questions and data generation. We then reviewed the high-quality articles in full for inclusion in the study, using a quality-assessment tool for quantitative studies.⁴¹ This tool assesses the internal and external validity of each study. Internal validity is the extent to which the observed effects are applicable to the

subjects in a study. External validity (generalizability or applicability) is the extent to which the effects detected in a study accurately reflect what can be expected in a target population beyond the subjects included in the study.

The following criteria were rated for each study: 1) selection bias (external validity), a condition in which the study sample does not represent the target population for whom the intervention was intended; 2) allocation bias, which can result from the way in which the intervention and control groups are assembled; for example, studies showing that comparison groups were not equivalent at baseline have a high level of allocation bias; 3) confounding, the presence of factors (other than the intervention) that may influence the outcome under investigation; 4) blinding (detection bias), which is important when outcomes may be subjective; 5) data collection methods, which determine whether the outcomes have been measured with valid and reliable instruments; 6) withdrawals and dropouts (attrition bias), indicating, for example, differences between the intervention and control groups in the number of withdrawals from the study; 7) statistical analysis, including a sample size sufficiently large to have the ability (or power) to detect significant differences between comparison groups; the lack of a statistically significant effect could be due to insufficient numbers of subjects rather than to ineffectiveness of the intervention; and 8) intervention integrity, which indicates that the study measured 5 dimensions of the intervention: adherence, exposure, quality of delivery, participant responsiveness, and program differentiation (to prevent contamination).

Inclusion Criteria

For inclusion in this review, articles were required to meet two criteria: 1) articles must have compared microthreaded implants to another type of implants; and 2) the study must have used one of the following methods: randomized controlled trial (RCT), prospective cohort study, retrospective cohort study, case-control study, cross-sectional design, or another clinical trial design that could determine an answer to the main study question. For RCTs, we used 5 criteria for assessment: 1) randomization method described, 2) allocation concealment reported, 3) intention-to-treat analysis performed, 4) blinded assessment stated, and 5) a priori power calculation performed. For cohort and other studies, the following criteria were used: 1) representative sample of adequate size, 2) well-matched samples, 3) adjustment for confounders in analyses, 4) blinded assessment stated, and 5) dropouts reported (for prospective studies only). Methodological quality and risk of bias were assessed independently by the reviewers according to Cooper.⁴²

Exclusion Criteria

Articles were excluded from the study if they met one or more of the following criteria: 1) publication in a language other than English: 2) a low level of evidence, such as studies with a small sample size, finite-element studies, literature reviews, and laboratory studies, case reports, review articles, letters to the editor, and commentaries.

Results

Study Selection

Our preliminary search of the 3 databases yielded 70 articles (Figure 1). Of these, 4 were excluded because they were not published in English. Article whose titles clearly indicated that they did not compare microthreaded implants with other implants were also excluded. After we eliminated duplicate articles from the list, we were left with 40 articles; we reviewed the abstracts of those articles for relevance in terms of addressing the main research questions. This review eliminated another 17 articles, leaving us with 23 articles for complete review with a quality assessment tool.

Of the 23 studies reviewed,⁴³⁻⁶⁵ 15 were considered to have a low risk of bias, 7 were categorized as having a moderate risk of bias, and 1 was considered to have a high risk of bias (Table). Most of the studies with a low risk of bias were RCTs. Most other cohort studies were considered to have a moderate risk of bias, and the studies with a high risk of bias were mainly case-series studies. The main weakness detected in all reviewed studies was failure to blind participants and providers to the types of implants used.

A summary of the studies, methods, results, and outcomes is presented in the Table.

General Characteristics

Fifteen studies^{43-48,51,53-55,58-61,65} used prospective designs, and 8^{49,50,52,56,57,62-64} used a retrospective design and were performed either in dental health centers or in universities. The total number of patients in the included studies ranged from 9 to 59

patients. The mean age of the participants in the studies ranged from 40 to 64 years, and their actual age ranged from 19 to 85 years (Table). Two studies^{46,59} used CT scans to measure CBL, whereas 18 studies used standardized periapical radiographs.^{43-45,48-54,56,57,60-65} Three studies^{47,55,58} used panoramic radiographs to follow up the changes in CBL (Table).

Surgical and Prosthetic Strategies

The total number of microthreaded implants placed in the included studies ranged from 17 to 118 implants (Figure 2). In 18 studies,^{47-61,63-65} implants were placed in pristine bone, whereas in 5 studies^{43-46,62} they were placed in fresh sockets (Table). Eleven studies^{46,49,52,56,57,59,60,62-65} used Astra Tech implants (Astra Tech AB, Mölndal, Sweden), which are made of pure grade 4 titanium and have a moderately rough surface blasted with titanium dioxide particles, as well as a microthreaded implant collar. Two studies^{47,55} used Replace Straight Groovy implants (Nobel Biocare AB, Göteborg, Sweden). Lee et al⁵¹ and Piao et al⁵⁴ used Hexplant implants (Warantec Co, Seoul, South Korea), whereas Khorsand et al⁴³ and Song et al⁵³ used Implantium implants (Dentium, Seoul, South Korea) (Table). Three studies^{44,45,58} used MIS implants (MIS-Implants Inc., Shlomi, Israel). Inhex (Mozo-Grau, S.L. Valladolid, Spain), Osstem (HIOSSEN Implant Canada INC. Vancouver, BC, Canada), and Oneplant (Warantec, Seoul, South Korea) implants were used in one study each.^{48,50,61}

Five studies^{44-46,52,62} used immediate loading of prostheses, and 17 studies^{43,47,48-51,53-55,57-61,63-65} used conventional loading. De Bruyn et al⁵⁶ used both immediate and

early loading protocols. Single or splinted crowns were fabricated for 14 studies,^{43,45,46,49,51,53,54,57,58,60-63,65} whereas fixed partial denture (FPD) prostheses were made for 6 studies.^{44,47,48,50,55,64} Van de Velde et al⁵² constructed complete fixed prostheses with cantilever. De Bruyn et al⁵⁶ and Cooper et al⁵⁹ loaded implants with removable overdenture prostheses (Figure 3, Table).

Marginal Bone Resorption Measurements and Follow-up Period

In the 23 included studies, the follow-up periods ranged from 12 to 96 months: 18 studies^{43,45,46,48,50-58,60-64} used follow-up periods ranging between 12 and 36 months, and 5 studies^{44,47,49,59,65} used follow-up periods of 40 months or longer (Table). CBL measurements after loading ranged from 0.05 mm to 0.9 mm. Generally, the smallest CBL measurements (0.05 ± 0.11 mm) were found around Astra tech implants fabricated and conventionally loaded with FPD prostheses after 12 months of follow-up.⁶⁴ The largest CBL measurements (0.9 ± 0.26 mm) were found around non-occlusal MIS Implants immediately loaded with fixed prostheses after 60 months of follow-up (Table).⁴⁴

Discussion

The systematic review evaluated the effect of microthreaded-neck implant geometry on CBL as described in the published reports of various clinical trials. The CBL measurements varied across these reports because of differences in implant systems, loading protocols, types of prostheses used, and differences in the imaging systems used. Interestingly, the Astra tech implants resulted in the lowest measurements of CBL (0.05

mm) when they were loaded conventionally with FPD prostheses but resulted in the highest measurements when they were immediately loaded with overdenture prostheses.^{56,64} This variation may be explained by the differences in the loading protocol between the two studies. Elsayed et el⁶⁶ reported that the immediate-loading protocol exerted a negative effect on the amount of CBL associated with locator-retained mandibular overdentures.⁶⁶ In two studies, Nickenig et al^{47,55} reported CBL measurements of 0.7 mm after 60 months of loading for Replace Straight Groovy implants conventionally loaded with FPD prostheses and measurements of 0.5 mm after 24 months of loading.

The radiographic evaluations of CBL around implants in the included articles yielded variable results because the studies used different imaging systems. Of the twenty-three studies, eighteen (78%) used periapical radiographs for CBL measurement.^{43-45,48-54,56,57,60-65} The reference points for CBL measurement also differed between studies. The most commonly used points were the implant shoulder,^{45,46,49} the implant neck,⁶⁴ the top of the implant,^{50,52,61} the implant-abutment interface,^{51,54} the border between the polished surface and the sandblasted and acid-etched (SLA) surface of the implant,⁵³ the lower edge of the smooth bevel of the coronal part of the implant,⁵⁶ and the border between the titanium oxide–blasted surface and the machined surface of the implant.⁶⁰

Several studies compared CBL around microthreaded rough-surface implants and around conventional rough-surface implants without microthreading and found that CBL was greater around conventional rough-surface implants.^{51,54,60,61} Lee et al⁵¹ reported that CBL was 0.95 mm around Brånemark TiUnite implants (Brånemark TiUnite Mk III;

Nobel Biocare AB) and 0.59 mm around Hexplant implants (Hexplant; Warantec Co) after 3 years of follow-up. Piao et al⁵⁴ found 1.24 mm of CBL around Brånemark TiUnite implants and 0.42 mm of CBL around Hexplant implants after one year of follow-up. The amount of CBL increased as healing time increased.

One study⁵² compared the amount of CBL associated with machined-surface implants and with microthreaded rough-surface implants; and 3 studies compared the amount of CBL associated with machined-neck implants and with microthreaded-neck implants. All of the studies found that the amount of CBL around machined-surface and machined-neck implants was higher than that around microthreaded implants.^{47,55,61} Van de Velde et al⁵² reported that CBL around machined Brånemark implants (Nobel Biocare AB) was 1.52 mm, whereas CBL around surface-modified Astra Tech implants with a microthreaded neck (TiOblast; AstraTech AB) was 0.70 mm. In two studies, Nickenig et al^{47,55} found that CBL around machined-neck implants (Replace Select Straight; Nobel Biocare AB) was 1.1 mm after 2 years of follow-up and 1.4 mm after 5 years of followup. In contrast, CBL around rough-surfaced microthreaded implants (Replace Straight Groovy; Nobel Biocare AB) was 0.5 mm after 2 years and 0.7 mm after 5 years of follow-up.

Microthreaded dental implants were placed in pristine bone in all but 5 of the studies^{43-46,62}; in these 5 studies, implants were placed immediately in fresh extraction sockets. CBL measurements in these 5 studies ranged from 0.3 to 0.9 mm around implants during 2 to 5 years of follow-up.^{43-46,62} None of these studies compared the placement of microthreaded implants in pristine bone, fresh extraction sockets, or grafted bone. Altintas et al⁶⁷ recently published the results of a study showing that, after 45

months of follow-up, there were no significant differences in the implant success rates between groups in which conventional rough-surface implants were placed in fresh extraction sockets or in mature healed bone.⁶⁷

Because the follow-up period of most of the studies included in this review⁴³⁻⁶⁵ was no longer than 96 months, the relationship of CBL to the number of disconnections or reconnections of superstructure components was not sufficiently clarified. A recent study²⁵ found that implants with a PS design are associated with less CBL during the healing process and as their abutments are disconnected than are non-platform-switched (NPS) implants with a comparable number of disconnections and reconnections. The average vertical bone resorption around NPS implants after 4 disconnections or reconnections was 1.09 mm \pm 0.25 mm, and the average horizontal bone resorption was 0.98 mm \pm 0.27 mm. The average vertical bone resorption around PS implants after 4 disconnections after 4 disconnections was 0.24 mm \pm 0.08 mm, and the average horizontal bone resorption around NPS and PS implants was statically significant (*P* < 0.05). There were statistically significant differences in average mesial and distal bone resorption values around PS implant adjacent to a tooth (*P* < 0.05).²⁵

The results of this systematic review agree with those of animal studies and finiteelement studies. A recent study evaluated the effect of implant macrodesign and position related to the bone crest on CBL associated with the placement of implants immediately after tooth extraction. All immediately placed implants are associated with some CBL, and both implant macrogeometry and implant placement relative to the bone crest

influence the CBL around these implants. Apical positioning of the implant does not enhance remodeling of the bone crest.⁶⁸

Alharbi et al⁶⁹ evaluated CBL after immediate placement of Straumann Bone Level implants (Straumann, Andover, MA) and OsseoSpeed implants (Dentsply) in fresh extraction sockets in Beagle dogs. Neither type of implant was associated with significant changes in CBL, although both types of implants resulted in some CBL. Both types of implants induced a similar bone response after immediate implantation at 4 and 12 weeks.⁶⁹

Negri et al⁷⁰ evaluated bone remodeling and soft-tissue reactions around immediate nonocclusal loaded implants with various collar configurations in Beagle dogs. The results suggest that tissue alterations that occurred during 1, 2, and 3 months of healing were in part related to the functional adaptation of the alveolar ridge that occurred after the implant nonocclusal loading in the two separate collar configurations. The microthreaded design may have played a role in maintaining CB.⁷⁰

A new experimental microthreaded scalloped (MTS) implant design was compared to a conventional flat platform implant by measurements of the CBL at various inter-implant distances in a canine model. Radiographic results showed that the experimental MTS implants were associated with substantially less CBL (0.81 ± 0.34 mm) than were the FT implants (1.60 ± 0.42 mm). Histologic measurement also demonstrated that there was significantly less marginal bone loss around the MTS implants (0.74 ± 0.41 mm) than around the FT implants (1.53 ± 0.52 mm; P < .001). There was no statistically significant difference in bone loss between the 2-mm and the 5mm inter-implant distances for either the MTS or the FT implants (P > .05).⁷¹ Park et al⁷² evaluated the effect of the microthreaded geometry of 4 types of scalloped-design titanium implants on MBR. The type 1 implant had a machined scalloped collar; type 2 had a SLA scalloped collar; type 3 had horizontal microthreads; and type 4 had parabolic microthreads parallel with the scalloped conical margin. Two implants of each type were randomly installed into the mandible of a Beagle dog immediately after tooth extraction. Definitive prostheses were delivered immediately after surgery. After 12 weeks of healing, the dog was put to death, and microtomography was performed. Type 4 specimens exhibited a marginal bone loss pattern definitively analogous to the scalloped margin. In this preliminary study, microthreaded geometry affected the MBR pattern of scalloped design implants.⁷²

Abrahamsson and Berglundh⁷³ analyzed bone tissue reactions at the sites of implants with or without a microthreaded configuration in dogs. Radiographic examination showed that the marginal bone level was well preserved at both test and control implant sites during the entire 16-month period. The degree of contact between bone and implant within the marginal portion of the implants was significantly higher for the test (microthreaded) implants (81.8%) than for the control implants (72.8%). The authors suggested that the microthreaded configuration offered improved the conditions for osseointegration.⁷³

Choi et al⁷⁴ examined the effects of thread size in the implant neck area on periimplant tissues in terms of bone-to-implant contact (BIC) and hard- and soft-tissue dimensions. No remarkable complications were observed during the healing period in either group. Resonance frequency testing found no significant differences between groups. Radiographic evaluation showed that control group lost more bone than did test

group with microthreaded implants, but this difference was not statistically significant. Micro-CT analysis showed no significant differences between the groups in BIC and bone-implant volume (BIV) values and soft-tissue height. Histologic analysis found no significant differences between groups in BIC ratio, bone density, or bone loss. However, soft tissue height was significantly greater in control group than in test group (P =0.0004). Thread size in the implant neck area was not associated with differences between groups in peri-implant hard or soft tissues.⁷⁴

A finite-element comparison of von Mises stresses between two thread designs was performed to assess the influence of implant-thread geometry on biomechanical load transfer. The results of the study showed that 4-fold microthreading improves stress distribution within the implant body by 43.85%, on the abutment by 15.68%, on its superstructure by 39.70%, and within cancellous bone by 36.30%, as compared to single-pitch microthreading. The effective stress transfer to the cortical bone is lowered by 60.47% with single-pitch microthreading. Single-pitch microthreading dissipates lower stresses to cortical bone, whereas the implant body, the abutment, and the superstructure absorb more stress. These differences in stress have a positive effect on BIC and contribute to the preservation of crestal bone. An implant with single-pitch microthreading.⁷⁵

A reduction in abutment diameter (i.e., PS) resulted in the translation of less stress to the crestal bone in the microthread implants.⁷⁶

The microthreaded design was found to be more effective in reducing shear stress under off-axis loading, which dominates in the oral cavity. However, higher peak compressive stress and strain around the microthreaded implant were found to be

localized in a smaller bone volume. The biomechanical rationale of the microthreaded design may reduce the risks of marginal bone loss caused by overloading.⁷⁷

Peak stress levels associated with scalloped implants varied by microthreaded designs, connection configurations, and loading direction. The conical PS connection seemed to be more important for a scalloped implant than for the microthreaded design in reducing the loading stresses exerted on the surrounding bone. Scalloped implants without microthreading and a with a conical PS connection or with closed microthreading and a conical PS connection exhibited consistently lower buccal bone stress than did flattop implants in areas in which the bone had a sloping and scalloping shape.⁷⁸

Dental implants with laser-ablated coronal microgrooves reduce peri-implant CBL. However, laser microgrooves appear to inhibit apical migration of crevicular epithelium and to promote true attachment of peri-implant gingiva. The formation of an interface between connective tissue and the implant collar that is more like that of a natural tooth will improve the long-term performance of dental implants.⁷⁹

In addition, the huge variation between the findings and the radiographic parameters of the studies using surgical and prosthetic protocols may minimize the positive impact of the microthreaded-neck implants on CBL.

Conclusion and Recommendation

Within the limitation of the present systematic review, the results indicate that thread geometry affects the distribution of stress forces around the implant. A decreased thread pitch may positively influence implant stability. Deeper threads seem to have an important effect on stabilization for patients with poorer bone quality. The addition of threads or microthreads up to the crestal module of an implant may positively contribute to BIC and to the preservation of marginal bone.

Additional RCTs are necessary for evaluating CBL after the placement of microthreaded-neck dental implants in grafted bone, pristine bone, and extraction sockets with various loading protocols. These studies should document the number of disconnects or reconnects necessary for the abutments and the types of contaminants to the microgap at the implant-abutment connection.

Conflict of Interest

Authors report no conflicts of interest, and no funding or grant support was available for this systemic review.

References

- MacEntee MI. The impact of edentulism on function and quality of life. In: Feine JS, Carlsson GE, eds. *Implant Overdentures: The Standard of Care for Edentulous Patients*. Chicago, Ill: Quintessence; 2003: 361–363.
- 2. Douglass CW, Shih A, Ostry L. Will there be a need for complete dentures in the United States in 2020? *J Prosthet Dent*. 2002;87(1):5–8.
- 3. Pye AD, Lockhart DEA, Dawson MP, Murray CA, Smith AJ. A review of dental implants and infection *J Hosp Infect*. 2009;72(2):104–110.
- 4. Verhoeven JW, Cune MS, de Putter C. Reliability of some clinical parameters of evaluation in implant dentistry. *J Oral Rehabil*. 2000;27(3):211–216.
- 5. Albrektsson T, Zarb G, Worthington P, Eriksson RA. The long-term efficacy of currently used dental implants: a review and proposed criteria for success. *Int J Oral Maxillofac Implants*. 1986;1(1):11–25.
- 6. Rocci A, Martignoni M, Gottlow J. Immediate loading of Brånemark System TiUnite and machined-surface implants in the posterior mandible: a randomized open-ended clinical trial. *Clin Implant Dent Relat Res.* 2003;5 Suppl 1:57–63.
- 7. Friberg B, Jemt T. Rehabilitation of edentulous mandibles by means of five TiUnite implants after one-stage surgery: a 1-year retrospective study of 90 patients. *Clin Implant Dent Relat Res.* 2008;10(1):47–54.
- 8. Abuhussein H, Pagni G, Rebaudi A, Wang HL. The effect of thread pattern upon implant osseointegration. *Clin Oral Implants Res.* 2010;21(2):129–136.
- 9. Kois JC. Predictable single tooth peri-implant esthetics: five diagnostic keys. *Compend Contin Educ Dent*. 2001;22(3):199–206.
- 10. Palacci P, Ericsson I. Esthetic Implant Dentistry: Soft and Hard Tissue Management. Chicago, Ill: Quintessence; 2001.
- 11. Tarnow DP, Cho SC, Wallace SS. The effect of inter-implant distance on the height of inter-implant bone crest. *J Periodontol*. 2000;71(4):546–549.
- 12. Tarnow DP, Magner AW, Fletcher P. The effect of the distance from the contact point to the crest of the bone on the presence or absence of the interproximal dental papilla. *J Periodontol*. 1992;63(12):995–996.
- 13. Tarnow DP, Elian N, Fletcher P, et al. Vertical distance from the crest of bone to the height of the interproximal papilla between adjacent implants. *J Periodontol*. 2003;74(12):1785–1788.

- 14. Nentwig GH. The Ankylos implant system: concept and clinical application. *J Oral Implantol*. 2004;30(3):171–177.
- Blake A. What Every Engineer Should Know About Threaded Fasteners: Materials and Design. New York, NY: Lawrence Livermore Laboratories, Marcel Dekker, Inc; 1986.
- 16. Driskell TD. *The DB Precision Implant System 1000 Series: Evolution and Rationale*. Galena, Ohio: Driskell Bioengineering; 1985.
- 17. Davies JE. Mechanisms of endosseous integration. *Int J Prosthodont*. 1998;11(5):391–401.
- 18. Daftary F. The bio-esthetic abutment system: an evolution in implant prosthetics. *Int J Dent Symp.* 1995;3(1):10–17.
- Buser D, Ruskin J, Higginbottom F, Hardwick R, Dahlin C, Schenk RK. Osseointegration of titanium implants in bone regenerated membrane-protected defects: a histologic study in the canine mandible. *Int J Oral Maxillofac Implants*. 1995;10(6):666–681.
- Brånemark PI, Adell R, Breine U, Hansson BO, Lindström J, Ohlsson A. Intraosseous anchorage of dental prostheses. I. Experimental studies. *Scand J Plast Reconstr Surg.* 1969;3(2):81–100.
- 21. Adell R, Lekholm U, Rockler B, et al. Marginal tissue reactions at osseointegrated titanium fixtures (I). A 3-year longitudinal prospective study. *Int J Oral Maxillofac Surgery*. 1986;15(1):39–52.
- 22. Cochran DL, Hermann JS, Schenk RK, Higginbottom FL, Buser D. Biologic width around titanium implants. A histometric analysis of the implanto-gingival junction around unloaded and loaded nonsubmerged implants in the canine mandible. *J Periodontol.* 1997;68(2):186–198.
- 23. Davarpanah M, Martinez H, Tecucianu JF. Apical-coronal implant position: recent surgical proposals. Technical note. *Int J Oral Maxillofac Implants*. 2000;15(6):865–872.
- 24. Abrahamsson I, Berglundh T, Lindhe J. The mucosal barrier following abutment dis/reconnection. An experimental study in dogs. *J Clin Periodontol*. 1997;24(8):568–572.
- 25. Rodríguez X, Vela X, Méndez V, Segalà M, Calvo-Guirado JL, Tarnow DP. The effect of abutment dis/reconnections on peri-implant bone resorption: a radiologic study of platform-switched and non-platform-switched implants placed in animals. *Clin Oral Implants Res.* 2013;24(3):305–311.

- 26. Cohen DW. Biologic Width. Washington, DC. Presented at Walter Reed Army Medical Center; 1962.
- 27. Gargiulo AW, Wentz FM, Orban B. Dimensions and relations of the dentogingival junction in humans. J Periodontol. 1961;32:261–267.
- Quirynen M, van Steenberghe D. Bacterial colonization of the internal part of two-stage implants. An in vivo study. *Clin Oral Implants Res.* 1993;4(3):158– 161.
- 29. Quirynen M, Bollen CM, Eyssen H, van Steenberghe D. Microbial penetration along the implant components of the Brånemark system. An in vitro study. *Clin Oral Implants Res.* 1994;5(4):239–244.
- 30. Ericsson I, Persson LG, Berglundh T, Marinello CP, Lindhe J, Klinge B. Different types of inflammatory reactions in peri-implant soft tissues. *J Clin Periodontol*. 1995;22(3):255–261.
- Persson LG, Lekholm U, Leonhardt A, Dahlén G, Lindhe J. Bacterial colonization on internal surfaces of Brånemark system implant components. *Clin Oral Implants Res.* 1996;7(2):90–95.
- 32. Hermann JS, Schoolfield JD, Schenk RK, Buser D, Cochran DL. Influence of the size of the microgap on crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged implants in the canine mandible. *J Periodontol*. 2001;72(10):1372–1383.
- 33. Todescan FF, Pustiglioni FE, Imbronito AV, Albrektsson T, Gioso M. Influence of the microgap in the peri-implant hard and soft tissues: a histomorphometric study in dogs. *Int J Oral Maxillofac Implants*. 2002;17(4):467–472.
- 34. Dibart S, Warbington M, Su MF, Skobe Z. In vitro evaluation of the implantabutment bacterial seal: the locking taper system. *Int J Oral Maxillofac Implants*. 2005;20(5):732–737.
- 35. Gardner DM. Platform switching as a means to achieving implant esthetics. *N Y State Dent J.* 2005;71(3):34–37.
- 36. Lazzara RJ, Porter SS. Platform switching: a new concept in implant dentistry for controlling postrestorative crestal bone levels. *Int J Periodontics Restorative Dent*. 2006;26(1):9–17.
- 37. Baumgarten H, Cocchetto R, Testori T, Meltzer A, Porter S. A new implant design for crestal bone preservation: initial observations and case report. *Pract Proced Aesthet Dent*. 2005;17(10):735–740.

- Moher D, Shamseer L, Clarke M, et al; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1.
- 39. Dixon-Woods M, Shaw RL, Agarwal S, Smith JA. The problem of appraising qualitative research. *Qual Saf Health Care*. 2004;13(3):223–225.
- 40. Dixon-Woods M, Agarwal S, Young, B, Jones D, Sutton A. Integrative approach to qualitative and quantitative evidence. London, UK: Health Development Agency; 2004. Available at: <u>https://www.researchgate.net/publication/249763686_Integrative_Approaches_to</u> <u>Qualitative_and_Quantitative_Evidence</u>. Accessed September 26, 2016.
- 41. Moher D, Jadad AR, Nichol G, Penman M, Tugwell P, Walsh S. Assessing the quality of randomized controlled trials: an annotated bibliography of scales and checklists. *Control Clin Trials*. 1995;16(1):62–73.
- 42. Cooper HM. *Synthesizing Research: A Guide for Literature Reviews*. 3rd ed. Thousand Oaks, Cal: SAGE Publications; 1998.
- 43. Khorsand A, Rasouli-Ghahroudi AA, Naddafpour N, Shayesteh YS, Khojasteh A. Effect of microthread design on marginal bone level around dental implants placed in fresh extraction sockets. *Implant Dent*. 2016;25(1):90–96.
- 44. Calvo-Guirado JL, López-López PJ, Pérez-Albacete Martínez C, et al. Periimplant bone loss clinical and radiographic evaluation around rough neck and microthread implants: a 5-year study. *Clin Oral Implants Res.* 2016 Jan 7. [Epub ahead of print]
- 45. Calvo-Guirado JL, Gómez-Moreno G, Aguilar-Salvatierra A, Guardia J, Delgado-Ruiz RA, Romanos GE. Marginal bone loss evaluation around immediate nonocclusal microthreaded implants placed in fresh extraction sockets in the maxilla: a 3-year study. *Clin Oral Implants Res.* 2015;26:761–767.
- 46. Noelken R, Neffe BA, Kunkel M, Wagner W. Maintenance of marginal bone support and soft tissue esthetics at immediately provisionalized OsseoSpeed implants placed into extraction sites: 2-year results. *Clin Oral Implants Res.* 2014;25(2):214–220.
- 47. Nickenig HJ, Wichmann M, Happe A, Zöller JE, Eitner S. A 5-year prospective radiographic evaluation of marginal bone levels adjacent to parallel-screw cylinder machined-neck implants and rough-surfaced microthreaded implants using digitized panoramic radiographs. *J Craniomaxillofac Surg.* 2013;41:564–568.
- 48. Peñarrocha-Diago MA, Flichy-Fernández AJ, Alonso-González R, Peñarrocha-Oltra D, Balaguer-Martínez J, Peñarrocha-Diago M. Influence of implant neck

design and implant-abutment connection type on peri-implant health. Radiological study. *Clin Oral Implants Res.* 2013;24(11):1192–1200.

- 49. Chang M, Wennström JL. Longitudinal changes in tooth/single-implant relationship and bone topography: an 8-year retrospective analysis. *Clin Implant Dent Relat Res.* 2012;14(3):388–394.
- Yun HJ, Park JC, Yun JH, et al. A short-term clinical study of marginal bone level change around microthreaded and platform-switched implants. J *Periodontal Implant Sci.* 2011;41(5):211–217.
- 51. Lee SY, Piao CM, Koak JY, et al. A 3-year prospective radiographic evaluation of marginal bone level around different implant systems. *J Oral Rehabil*. 2010;37(7):538–544.
- 52. Van de Velde T, Collaert B, Sennerby L, De Bruyn H. Effect of implant design on preservation of marginal bone in the mandible. *Clin Implant Dent Relat Res*. 2010;12(2):134–141.
- 53. Song DW, Lee DW, Kim CK, Park KH, Moon IS. Comparative analysis of periimplant marginal bone loss based on microthread location: a 1-year prospective study after loading. *J Periodontol*. 2009;80(12):1937–1944.
- 54. Piao CM, Lee JE, Koak JY, et al. Marginal bone loss around three different implant systems: radiographic evaluation after 1 year. *J Oral Rehabil*. 2009;36(10):748–754.
- 55. Nickenig HJ, Wichmann M, Schlegel KA, Nkenke E, Eitner S. Radiographic evaluation of marginal bone levels adjacent to parallel-screw cylinder machined-neck implants and rough-surfaced microthreaded implants using digitized panoramic radiographs. *Clin Oral Implants Res.* 2009;20(6):550–554.
- 56. De Bruyn H, Besseler J, Raes F, Vaneker M. Clinical outcome of overdenture treatment on two nonsubmerged and nonsplinted Astra Tech Microthread implants. *Clin Implant Dent Relat Res.* 2009;11(2):81–89.
- 57. Kwon HJ, Lee DW, Park KH, Kim CK, Moon IS. Influence of the tooth- and implant-side marginal bone level on the interproximal papilla dimension in a single implant with a microthread, conical seal, and platform-switched design. J *Periodontol.* 2009;80(9):1541–1547.
- 58. Bratu EA, Tandlich M, Shapira L. A rough surface implant neck with microthreads reduces the amount of marginal bone loss: a prospective clinical study. *Clin Oral Implants Res.* 2009;20(8):827–832.
- 59. Cooper LF, Moriarty JD, Guckes AD, et al. Five-year prospective evaluation of mandibular overdentures retained by two microthreaded, TiOblast nonsplinted implants and retentive ball anchors. *Int J Oral Maxillofac Implants*.

2008;23(4):696–704.

- 60. Lee DW, Choi YS, Park KH, Kim CS, Moon IS. Effect of microthread on the maintenance of marginal bone level: a 3-year prospective study. *Clin Oral Implants Res.* 2007;18(4):465–470.
- 61. Shin YK, Han CH, Heo SJ, Kim S, Chun HJ. Radiographic evaluation of marginal bone level around implants with different neck designs after 1 year. *Int J Oral Maxillofac Implants*. 2006;21(5):789–794.
- 62. De Kok IJ, Chang SS, Moriarty JD, Cooper LF. A retrospective analysis of periimplant tissue responses at immediate load/provisionalized microthreaded implants. *Int J Oral Maxillofac Implants*. 2006;21(3):405–412.
- 63. Puchades-Roman L, Palmer RM, Palmer PJ, Howe LC, Ide M, Wilson RF. A clinical, radiographic, and microbiologic comparison of Astra Tech and Brånemark single tooth implants. *Clin Implant Dent Relat Res.* 2000;2(2):78–84.
- Nordin T, Jönsson G, Nelvig P, Rasmusson L. The use of a conical fixture design for fixed partial prostheses. A preliminary report. *Clin Oral Implants Res.* 1998;9(5):343–347.
- 65. Norton MR. Marginal bone levels at single tooth implants with a conical fixture design. The influence of surface macro- and microstructure. *Clin Oral Implants Res.* 1998;9(2):91–99.
- 66. Elsyad MA, Elsaih EA, Khairallah AS. Marginal bone resorption around immediate and delayed loaded implants supporting a locator-retained mandibular overdenture. A 1-year randomised controlled trial. *J Oral Rehabil.* 2014;41(8):608–618.
- 67. Altintas NY, Taskesen F, Bagis B, Baltacioglu E, Cezairli B, Senel FC. Immediate implant placement in fresh sockets versus implant placement in healed bone for full-arch fixed prostheses with conventional loading. *Int J Oral Maxillofac Surg.* 2016;45(2):226–231.
- 68. Calvo-Guirado JL1, Gomez Moreno G, Aguilar-Salvatierra A, Mate Sanchez de Val JE, Abboud M, Nemcovsky CE. Bone remodeling at implants with different configurations and placed immediately at different depth into extraction sockets. Experimental study in dogs. *Clin Oral Implants Res.* 2015;26(5):507–515.
- 69. Alharbi HM, Babay N, Alzoman H, Basudan S, Anil S, Jansen JA. Bone morphology changes around two types of bone-level implants installed in fresh extraction sockets--a histomorphometric study in Beagle dogs. *Clin Oral Implants Res.* 2015;26(9):1106–1112.
- 70. Negri B, Calvo Guirado JL, Maté Sánchez de Val JE, Delgado Ruíz RA, Ramírez Fernández MP, Barona Dorado C. Peri-implant tissue reactions to immediate

nonocclusal loaded implants with different collar design: an experimental study in dogs. *Clin Oral Implants Res.* 2014;25(2):e54–63.

- 71. Choi KS, Lozada JL, Kan JY, Lee SH, Kim CS, Kwon TG. Study of an experimental microthreaded scalloped implant design: proximal bone healing at different interimplant distances in a canine model. *Int J Oral Maxillofac Implants*. 2010;25(4):681–689.
- 72. Park YS, Lee SP, Han CH, Kwon JH, Jung YC. The microtomographic evaluation of marginal bone resorption of immediately loaded scalloped design implant with various microthread configurations in canine mandible: pilot study. *J Oral Implantol*. 2010;36(5):357–362.
- 73. Abrahamsson I, Berglundh T. Tissue characteristics at microthreaded implants: an experimental study in dogs. *Clin Implant Dent Relat Res*. 2006;8(3):107–113.
- 74. Choi JY, Moon IS, Yun JH, Park KH, Huh JK, Lee DW. Effects of thread size in the implant neck area on peri-implant hard and soft tissues: an animal study. *Clin Oral Implants Res.* 2016;27(9):1187–1192.
- 75. Herekar MG, Patil VN, Mulani SS, Sethi M, Padhye O. The influence of thread geometry on biomechanical load transfer to bone: A finite element analysis comparing two implant thread designs. *Dent Res J* (Isfahan). 2014;11(4):489–494.
- 76. Schrotenboer J, Tsao YP, Kinariwala V, Wang HL. Effect of microthreads and platform switching on crestal bone stress levels: a finite element analysis. *J Periodontol*. 2008;79(11):2166–2172.
- 77. Hudieb MI, Wakabayashi N, Kasugai S. Magnitude and direction of mechanical stress at the osseointegrated interface of the microthread implant. *J Periodontol*. 2011;82(7):1061–1070.
- 78. Choi KS, Park SH, Lee JH, Jeon YC, Yun MJ, Jeong CM. Stress distribution on scalloped implants with different microthread and connection configurations using three-dimensional finite element analysis. *Int J Oral Maxillofac Implants*. 2012;27(3):e29–38.
- 79. Ketabi M, Deporter D. The effects of laser microgrooves on hard and soft tissue attachment to implant collar surfaces: a literature review and interpretation. *Int J Periodontics Restorative Dent*. 2013;33(6):e145–152.

Table	
-------	--

Table: Characteristics and	outcomes of studies	included in this review
----------------------------	---------------------	-------------------------

Author	Year	Type of study	# of Pts	# of Implants	Follow- up (mo)	Loading Protocol	Type of Prosthesis	Implant Brand Name	Implant Design	CBL (mm)	Measure- ment Method	Implant Site
Khorsand et al ⁴³	2016	RCT, Prospective	16	22	12	Conventional	Single Crowns	Implantium, Seoul, South Korea	Microthreads up to the platform, rough surface, internal connection and platform switching	0.75 ± 0.32	ΡΑ	Fresh Socket
Calvo- Guirado et al ⁴⁴	2016	Prospective cohort study	53	71	60	Immediate non-occlusal loading	Fixed Prostheses	MIS- Implants Inc., Barlev, Israel	Microthreads up to the platform, rough- surface body and neck, internal connection and platform switching	0.90 ± 0.26	ΡΑ	Fresh Socket
Calvo - Guirado et al ⁴⁵	2015	Prospective cohort study	53	71	36	Immediate non-occlusal loading	Single Crowns	MIS Implants Inc., Shlomi, Israel	Microthreads up to the platform, rough surface, internal connection and platform switching,	0.86± 0.29	ΡΑ	Fresh Socket
Noelken et al ⁴⁶	2014	Prospective cohort study	20	37	24	Immediate	Crowns or FPDs	OsseoSpeed TM Astra Tech AB, Mölndal, Sweden.	Screw-shaped and self-tapping implants, conical implant– abutment interface, Micro-Thread Implant diameters 3.5, 4.0, 4.5, 5.0 mm with implant lengths 11 or 17 mm.	0.70 ± 0.58	CBCT	Fresh Socket

Nickenig et al ⁴⁷	2013	Prospective cohort study	34	70	60	Conventional	FPDs	Replace Straight Groovy, Nobel Biocare AB, Göteborg, Sweden.	Rough-surface microthreaded implants	0.70	Panoramic	Pristine Bone
Peñarrocha- Diago et al ⁴⁸	2012	RCT, Prospective	9	64	12	Conventional	Fixed Prostheses	Inhex, Mozo-Grau, S.L. Valladolid, Spain	Rough-surface, microthreaded, internal connection, and platform switching	0.12 ± 0.17	ΡΑ	Pristine Bone
Chang and Wennström ⁴ 9	2012	Retrospecti ve cohort study	31	31	96	Conventional	Single Crowns	Astra Tech implants, Astra Tech AB, Mölndal, Sweden.	Pure titanium grade 4 and blasted with titanium dioxide particles, moderately rough surface, with microthreads	0.10± 1.30	ΡΑ	Pristine Bone
Yun et al ⁵⁰	2011	Retrospecti ve cohort study	27	79	12	Conventional	Fixed Prostheses	Osstem GS III implants, HIOSSEN Implant Canada INC. Vancouver, BC, Canada	Tapered body with angle of 1.5°; microthreads in the upper part; double threads in the lower part	0.16± 0.08	ΡΑ	Pristine Bone
Lee et al ⁵¹	2010	RCT, Prospective	21	45	36	Conventional	Single or Splinted Crowns	Hexplant; Warantec Co, Seoul, South Korea	Advanced blasted and etched surface; surface roughness, Ra 1.44 micron; microthreads in the implant neck and progressive square type	$\begin{array}{c} 0.59 \pm \\ 0.30 \end{array}$	ΡΑ	Pristine Bone

Van de Velde et al ⁵²	2010	Retrospecti ve cohort study	10	50	12	Immediate	Complete Fixed Prostheses with Cantilever	TiOblast microthread ; AstraTech AB, Mölndal, Sweden	power thread design Pure grade 4 titanium blasted with titanium dioxide particles; moderate rough surface with microthreads	0.81 ± 1.11	PA	Pristine Bone
Song et al ⁵³	2009	Prospective cohort study	20	20	12	Conventional	Splinted Crowns or FPDs	Implantium, Dentium, Seoul, South Korea	Screw-shaped, threaded implants made of commercially pure titanium with a sandblasted, large grit, acid- etched (SLA) surface; microthreads to the top of the fixture	0.16 ± 0.19	ΡΑ	Pristine Bone
Piao et al ⁵⁴	2009	RCT, Prospective	21	45	12	Conventional	Single or Splinted Crowns	Hexplant; Warantec Co, Seoul, South Korea	Advanced blasted and etched surface; surface roughness, Ra 1.44 micron; microthreads in the implant neck and progressive square type power thread design	0.42 ± 0.27	PA	Pristine Bone
Nickenig et al ⁵⁵	2009	Prospective cohort study	34	70	24	Conventional	FPDs	Replace Straight Groovy, Nobel Biocare AB,	Rough-surfaced microthreaded implants	0.50	Panoramic	Pristine Bone

								Gothenburg,				
De Bruyn et al ⁵⁶	2009	Retrospecti ve cohort study	37	54	18	Early loaded	Overdentur e Prostheses	TiOblast microthread ; AstraTech AB, Mölndal, Sweden.	Pure grade 4 titanium blasted with titanium dioxide particles; moderately rough surface, with microthreads; 4 X 8-17mm	0.80± 0.48	PA	Pristine Bone
Kwon et al ⁵⁷	2009	Case Series Retrospecti ve	17	17	12	Conventional	Crowns	MicroThread , Astra Tech, Mölndal, Sweden	Microthreaded, conical seal, and platform- switched design implant	0.16 ± 0.17	PA	Pristine Bone
Bratu et al ⁵⁸	2009	Prospective cohort study	46	46	12	Conventional	Crowns	MIS- Implants Inc., Shlomi, Israel	Microthreads up to the platform, rough surface, internal connection and platform switching	0.69 ± 0.25	Panoramic	Pristine Bone
Cooper et al ⁵⁹	2008	Prospective cohort study	59	118	60	Conventional	Overdentur e Prostheses	TiOblast microthread ; AstraTech AB, Mölndal, Sweden	Pure grade 4 titanium blasted with titanium dioxide particles, moderately rough surface, with microthreads	+0.09 ±0.79	СТ	Pristine Bone
Lee et al ⁶⁰	2007	Prospective cohort study	17	17	36	Conventional	Splinted Crowns	TiOblast microthread ; AstraTech AB, Mölndal, Sweden	Pure grade 4 titanium blasted with titanium dioxide particles, moderately rough surface, with microthreads	0.24± 0.13	ΡΑ	Pristine Bone

Shin et al ⁶¹	2006	Prospective cohort study	38	38	12	Conventional	Single or Splinted Crowns	Oneplant; Warantec, Seoul, South Korea	Sandblasted and acid-etched (SLA) surface and microthreads in the implant neck	0.18 ± 0.16	ΡΑ	Pristine Bone
De Kok et al ⁶²	2006	Retrospecti ve cohort study	25	39	30	Immediate	Single Crowns	Astra Tech, Waltham, MA	Pure grade 4 titanium blasted with titanium dioxide particles, moderately rough surface, with microthreads	0.30± 0.39	ΡΑ	Fresh Socket
Puchades- Roman et al ⁶³	2000	Retrospecti ve	30	30	24	Conventional	Single Crowns	Astra Tech implants; Astra Tech AB, Mölndal, Sweden	Pure grade 4 titanium blasted with titanium dioxide particles, moderately rough surface, with microthreads	0.45	ΡΑ	Pristine Bone
Nordin et al ⁶⁴	1998	Retrospecti ve	10	25	12	Conventional	FPDs	Astra Tech implants; Astra Tech AB, Mölndal, Sweden	Pure grade 4 titanium blasted with titanium dioxide particles, moderately rough surface, with microthreads	0.05± 0.11	ΡΑ	Pristine Bone
Norton ⁶⁵	1998	Prospective cohort study	31	33	48	Conventional	Single Crowns	Astra Tech implants, Astra Tech AB, Mölndal, Sweden	Pure titanium grade 4 and blasted with titanium dioxide particles, moderate rough surface, with microthreads.	0.61	ΡΑ	Pristine Bone

Immediate, within 24 hr after implant placement; Conventional, 3 to 6 months after implant placement.

Abbreviations: CBCT, cone beam computed tomography; CBL, crestal bone loss; CT, computed tomography; FPD, fixed partial denture; PA, periapical radiographs; RCT, randomized controlled trial.

Fig. 1: Description of included records in the systematic review

Fig. 2: Various microthread implants reported in the studies with CBL.

- A. Osstem GS III.
- B. MIS implant.
- C. Astra Tech.
- D. Nobel Biocare.
- E. Hexplant.
- F. Implantium.
- G. Oneplant

Copyright Form

Click here to access/download **Copyright Form** Kutkut Copyright.pdf